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Olefin metathesis has emerged as one of the most powerful Table 1. CM between Silylated Alkynes and 1-Octene?

contemporary synthetic tools in organic chemist@ontrary to the R2 1 - RQJ\A \
widespread application of ring-closing metathesis (RCM), that of R‘/ +/\C H.. CHClp 7 “Ceis * ~ R
13

3

cross metathesis (CN¥has been limited partly because of low 3 ¢ 40h sa-e™ : Egs;r\Hn)e) "
chemoselectivity (homo- vs heterocoupling) and stereoselectivity - :

(E vsZ). TheenyneCM (EYCM) reaction, in which the CM occurs ™Y akyne R R yield of 4 (6 ratio (455)
between an alkene and an alkyne, renders regioselectivity as another 1 3a  OAc SiMes 6 4only
dimension of complexity.To circumvent the selectivity problem g gg %\?ﬁe)m ilim% ?gﬁ i,olng,s,)
of forming an inseparable mixture of isomérie EYCM reaction 4 3d  CsHy SiM; e 4only
has been confined to the pairings of internal alkyne-ethylend 5 3e OMe SiPh(OHex) 81 10:1 @:5)

terminal alkyne-terminal alkerfeTo the best of our knowledge, —
the stereoselective EYCM reaction between unsymmetrical internal__? 1 (7—15 mol %) and 1-octene ¢48 equiv) in CHCI; (0.03 M) at 40

. . °C. PIsolated yields¢ Reaction with the first-generation Grubbs catalyst,
alkynes and unsymmetrical alkenes has not been redlizfée. (PCys)2(Cl),RU=CHPh, gave onla. ¢ Low yield because of desilylation.

envisioned that silyl functionality, known for its steric and elow yield from low conversion and volatility ofd. f 96:4 of Z/E isomer.
stereoelectronic biasing effect in a variety of reactibosuld be

instrumental in influencing the regio- and stereoselectivity of the 120/e 2. CM of Silylated Alkynes with Functionalized Alkenes?

EYCM reaction of silylated alkynesWe report herein the first Entry  alkyne alkene 1,3-diene yield (%)”
example of a highly regio- and stereoselective EYCM reaction of SiMes B AcO B
silylated internal alkynes with functionalized alkenes. Z 2 ° 7 '
The EYCM reaction of silylated internal and terminal alkynes ; one 8 -l ﬁ; SiMes gg
catalyzed by (Hmes)(PCy)(Cl);Ru=CHPh (1) resulted in quite ke A0 oA
different regio- and stereoselectivity Terminal alkynes such as 1" o 7 63
trimethylsilylacetylene gave 1,3-dien2 (58%) having a 1,3- ﬁ 2;3 4h Sive, 7
relationship between the alkenyl substituent and SiMigh low 5 n=4o 4 o o 80
stereoselectivity (3:1) and dou_ble-CM prod@cf7%, single |_some_r) s~ Py AO _ S
(eqg 1). On the other hand, internal alkyBa afforded dienedi 6 N\_/O w | 2 N\_/O 30
(71%), possessing a 1,2-relationship of these substituents, as a single S, SiMe; ¢ .
regio- and stereoisoméralong with a small amount of ethylene- O ACOJ\/VO
crossed produdba (<5%) (eq 2)1? 7 \©\ a L 42
3
i Ts
7 1,3] SiMes - N\M/\
SiMes ) OAc SiMes Z s Ohe am 7 1y "OAc 65e
SiMe; . . 8 3c SiMes 5
=z — ) a‘M)a (1) _NTs Ts
A O 2 on 2 o 9 PN /NJHWBr 799
3 4n .
SiM
sive,  catalyst1 AcO AcO glhz M
FZ =" OCgH MeO
Z OA Z o 2 Z
/3a M o ;\T% @ 10 /3"’ /\/\[o]/ 40 ohSi-0CHs O %4
Ohe . SiMe; ‘) SiMeg OMe 2Si-OCgH13
4i U 1.2] 5a
’ 11 Z>"onc Me(z\)HW\OAC 61
. o . . - P .
To gain more insight regarding the regio- and stereoselectivity Ph,Si-0CgH13
pf this process, we examined What_ effect propargylic su_bstltéﬁ_ents 12 ~~g  MeO _ . 56!
in alkynes 3a—e would exert during an EYCM reaction with 4 _ g
1-octene. The EYCM productsa—c and4ewere isolated as single 9 PhoSi-OCethrs

;-eglg-.lalnd Zterﬁ(msog:jerhs W.Ith vary_lng Iamolllinltg ﬁfn_dS (Tablle a1 (7—15 mol %) and 1-alkene (48 equiv) in CHCI, (0.03 M) at 40
)- |y§te ] a. yn.e a'VIng a simple alkyl chain gave O_W °C. P Isolated yields¢ Mixture of 4m and5¢ (5.6:1).4 Mixture of 4n and
conversion, indicating the importance of the heteroatom substituentse (2.2:1).¢Isolated as a mixture ofq and5e. f 95:5 mixture ofZ/E.

at the propargylic site (entry 4). The EYCM reactiorn3ofafforded

not only 4c but also5c (15%), which is derived from a double  and3e which provided 1,3-diene product$—p as single stereo-

bond-migrated internal alkene (entry 13). isomers except fodq (Z/E, >95:5) (Table 2). In general, alkenes
Next, the scope of this EYCM reaction was further examined with a longer distance between the double bond and the heteroatom
by employing various functionalized 1-alkenes and alky3egsSc, substituent gave better efficiency in the CM reaction (entries 1, 2,
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Table 3. CM of Silylated Alkynes Possessing a Tethered Alkene?

Ph_Ph
Ph_ Ph 1-alk MeO S
O/SI\OR -aene Z"R? + 5 Z
Me! i
6 1, CH,Clp 7af PheSi~op OMe |
- - 15 (75%) 16
Entry R 1-alkene yield of 7(%)¢  ratio (Z/E)? 14
; o X~ OAc 83 97:3 a th
o O N
w PN 44 single AcO “RuL,
2 6a N‘ —0 isomer 17 RuL,
3 @/K O 64 93:7
4 6b NN0p0 65 96:4 In summary, we have developed a highly regio- and stereo-
N NNOAe 60 96:4 selective CM reaction between silylated alkynes and functionalized
: ~ o alkenes. The selectivity is assumed to be the result of the steric
6 6c XS OAC 84 95:5

and stereoelectronic biasing effect of the silyl group. The reaction
mechanism regarding the propagating alkylidene species and its
regiochemistry of addition to an alkyne was unambiguously

a1 (7—15 mol %) and 1-alkene (2 equiv) in GEI, (0.03 M) at 40°C.
blsolated yields® 5 constitutes the remaining mass balarftRatio was

determined by'H NMR. demonstrated by employing a tandem CM-RCM reaction. Further
investigation regarding the origin of the observed selectivity is in
Scheme 1
progress.
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